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a b s t r a c t 

Using European stock data from two different venues and time periods for which we can identify each 

trade’s aggressor, we test the performance of the bulk volume classification ( Easley et al. (2016) ; BVC) 

algorithm. BVC is data efficient, but may identify trade aggressors less accurately than “bulk” versions of 

traditional trade-level algorithms. BVC-estimated trade flow is the only algorithm related to proxies of 

informed trading, however. This is because traditional algorithms are designed to find individual trade 

aggressors, but we find that trade aggressor no longer captures information. Finally, we find that after 

calibrating BVC to trading characteristics in out-of-sample data, it is better able to detect information 

and to identify trade aggressors. In the new era of fast trading, sophisticated investors, and smart order 

execution, BVC appears to be the most versatile algorithm. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Markets across the world have experienced dramatic change in

he past fifteen years. The proliferation of high-speed computers

nd the declining cost of trading in electronic limit order mar-

ets have produced an explosion in trading volume and speed

 Jain, 2005; Hendershott and Moulton, 2011 ). The rapid growth of

lgorithmic low-latency trading, including high frequency trading

HFT), has called into question the efficacy and the relevance of

raditional methods to identify the aggressor side of each trade

 Holden and Jacobsen, 2014 ). O’Hara (2015) notes that common

eatures in today’s markets—for example, smart execution algo-
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ithms that use limit orders, microsecond trading frequencies, and

uote volatility—impair traditional individual trade-level classifica-

ion algorithms from uncovering the trading intentions underlying

he orders. Detecting information from trades is important since

uch trading underpins much of the theoretical work on trading

nd price formation (see Kyle, 1985 ; Glosten and Milgrom, 1985 )

nd impacts empirical work investigating toxic order flow ( Pöppe

t al., 2016; Easley et al., 2012 ). It also helps researchers and reg-

lators understand and prevent extreme volatility events like the

Flash Crash” (see Kirilenko et al., 2017 ; Easley et al., 2011 ). Though

nformation detection is of primary importance, aggressor-signing

an be useful as well, for characterizing investor clientele behavior

nd assessing trading costs, and an ideal algorithm should do both.

This paper helps address these issues by examining the newly

eveloped bulk volume classification algorithm ( Easley et al.,

016 ); hereafter BVC) in modern, low-latency equity markets. BVC

ses total volume and price changes within a block of trades to

lassify order flow into buying and selling volume. We assess BVC

erformance in terms of the accuracy in finding trade aggressors

nd ability to capture informative trade flow. To help us calibrate

he algorithm, we compare BVC’s performance to bulk versions

f traditional trade-level algorithms, bulk tick test ( Smidt, 1985;

olthausen et al., 1987 ), and the Lee and Ready (1991) algorithm

hereafter LR). We find that BVC can identify trade aggressors as

https://doi.org/10.1016/j.jbankfin.2019.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jbf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbankfin.2019.04.001&domain=pdf
mailto:panayides.marios@ucy.ac.cy
mailto:shohft@rpi.edu
mailto:jared_smith@ncsu.edu
https://doi.org/10.1016/j.jbankfin.2019.04.001
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well as traditional algorithms, and its signed order flow is the only

measure that is reliably related to different illiquidity measures

shown to capture the trading intensions of informed traders (e.g.,

Easley et al., 2016 ). 

We use equities data from NYSE Euronext for 2007 and 2008

and from the London Stock Exchange for 2017 to perform our

analyses. These datasets have several advantages that make them

ideal for our study. First, we have two distinct periods to test the

effects of low-latency trading on the performance of the different

classification algorithms. The early data contain second-level

timestamps, while the later data use microseconds, allowing us to

examine the benefit of more granular data. In addition, European

markets did not fragment as rapidly as U.S. equity markets (see

Fig. 1 of Menkveld, 2013 ). The low level of fragmentation, com-

bined with rich datasets that allow us to identify the aggressor

side of 97.9% of the trades in our samples, means that our study

uses nearly all trading activity in the dominant trading venues

to conduct our analyses. This is particularly important for testing

which classification algorithms can capture the trading intentions

of informed traders. 

We begin our analysis by investigating how well BVC classifies

trade aggressors in our samples. BVC involves putting trades into

blocks, or bars, by either volume or time. A percentage of the

block is then classified as buys (the remainder as sells) based upon

the movement of prices around the bars. By construction, the BVC

algorithm is highly data efficient as it uses aggregate bar-size

trading volume and prices, which translates to less than 1% of the

trade data points. The Euronext sample results on finding trade

aggressors comport with those in Chakrabarty et al. (2015) and

Easley et al. (2016) ; BVC is not as accurate as bulk versions of

traditional trade-level algorithms. This reverses, however, in our

more recent 2017 sample. Indeed, even though all three algorithms

perform worse in the LSE sample, BVC is the most accurate. This

suggests that more granular data does not save traditional algo-

rithms from broad shifts in speed, volume, and market structure.

According to Nanex, peak intra-second quote rates have increased

100 times since 2007, a growth rate far exceeding that of comput-

ing power. 1 Several studies suggest this increased quote activity

might not be informative to trade-level algorithms. For example,

Baruch and Glosten (2016) find quote randomization optimally

manages risk from predatory trading; Hasbrouck (2018) finds that

HFT-driven quote volatility degrades information within quotes. 

In our next set of analyses, we examine whether BVC can

effectively uncover underlying trading intentions in order flow.

In today’s markets, researchers and practitioners are increasingly

interested in identifying buying or selling pressure that can be

destabilizing and/or toxic. Information-related order flow will

unavoidably disadvantage other traders (retail traders and some

institutional traders; O’Hara, 2015 ). To test information in BVC

order flow, we run spread regressions and an event study analysis

focusing on return predictability from order flow in the pre-event

period. We measure spreads in two ways, using the Corwin and

Schultz (2012) high-low spread and calculating intraday effective

spreads. Easley et al. (2016) ; hereafter ELO use the first approach,

which they argue is best for BVC, because it removes underlying

asset volatility. We then regress our spread measures on the

buy/sell order imbalance with stock and month fixed effects. If an

algorithm successfully estimates the underlying informed order

flow, then a larger algorithm-estimated order imbalance should be

directly associated with a larger spread in a given bar. 

We find that BVC-estimated order imbalance is positively re-

lated to the spread measures for nearly all bar sizes in various sub-
1 See “HFT is Out of Control” at http://www.nanex.net/research/MsgRates/ 

EquityMessageRates.html . 
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amples. When estimated in a pre-event window, it is also directly

elated to event period returns in a sample of various corporate

vents (e.g., earnings releases, buyback and M&A announcements).

ulk tick test order imbalance is negatively related to the spread

easures, opposite to what standard microstructure theory would

uggest, and it is unrelated to event returns. Thus, while BVC im-

alance relates to the spread in a direction we expect, bulk tick

mbalance does not. 

This is not a failure of the tick test, however. When we run our

pread regressions using the actual trade aggressor, known from

ur order data in both samples, aggressor imbalance is often neg-

tively related to the spread measures and it is unrelated to event

eturns in a multivariate analysis. These results indicate that trade

ggressor identification does not convey underlying information in

oday’s fast markets, where sophisticated traders use smart algo-

ithmic trading to hide their trading intentions and minimize mar-

et impact. For example, informed traders are increasingly relying

n passive orders, i.e., limit orders, to disguise themselves in the

arket ( Bouchaud et al., 2009; Menkhoff et al., 2010; Zhang, 2013 ).

herefore, any traditional trade-level algorithm designed to find a

rade’s aggressor will not tell us much about information, no mat-

er how accurate. By contrast, BVC order imbalance is defined in

 way that captures the resulting (equilibrium) price impact of or-

er flow at the end of a bulk period, which seems better able to

apture information. 

Lastly, we explore how changes to BVC’s implementation affect

ts performance. Though most often researchers focus on detecting

nformation, trade aggressors can also be important for describing

he trading behaviors of various investor groups (such as individ-

al investors, or short-sellers), for measuring the impact of maker-

aker fees ( Battalio et al., 2016 ), and for assessing trading costs as-

ociated with market anomalies ( Novy-Marx and Velikov, 2016 ). To

egin our BVC calibration, we examine heterogeneity in bar size

fill rates,” showing how differently identical bar sizes will function

cross stocks. We also find a systematic bias when trades are trun-

ated to make volume bar sizes exact, a bias which can be as large

s 44%. By using flexible, minimum volume bar sizes, rather than

xact ones, this bias is eliminated. In our suggested calibration ap-

roach, we iterate across a set of bar sizes to select a bar size large

nough to limit excess kurtosis (and better fit the BVC’s assumed t-

istribution of price changes), but small enough to produce enough

ata points in any sample-month (and thus have meaningful vari-

tion in price). Relative to a set of randomly chosen BVC bar sizes,

ur calibrated bars better find aggressors and successfully detect

nformation in both times series regression and event study set-

ings. 

This paper contributes to the nascent literature on trade clas-

ification algorithms (including BVC) and low-latency trading, as

ell as adding to the long list of papers investigating the perfor-

ance of the LR and tick test algorithms. While ELO use futures

ata to investigate BVC, our study examines equities markets using

ecent, rich data from two prominent and relatively concentrated

enues. Using equities entails an additional challenge, which re-

uires security level calibration, because “the optimal interval [bar

ize] is unlikely to be uniform across stocks with disparate trading

ctivity” ( ELO (2016) pg. 35). This is important because of insti-

utional differences, clientele effects, and differences in investors’

rading behavior (especially for informed traders) that exist be-

ween futures and equity markets. For example, there is evidence

hat block purchases and sales have a differential price impact

n equity markets but not the futures market (see, for example,

han and Lakonishok, 1993 ; Berkman et al., 2005 ). 

Chakrabarty et al. (2015) also examine BVC in an equities sam-

le, using NASDAQ data from 2011. They find that BVC cannot clas-

ify trade aggressors as accurately as bulk versions of tick and LR.

urther, they find that BVC does worse in measuring the order flow

http://www.nanex.net/research/MsgRates/EquityMessageRates.html
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Fig. 1. Graph of volatility and volume of the CAC-250 Index (FTSE-350 Index) from January 2007 through June 2008 (December 2016 through June 2017) in the first (second) 

row. 60 day average volatility of the index is represented by the black line and measured by the left vertical axis. Volume of the CAC-250 (FTSE-350) index components, in 

millions, is represented by the gray area at the bottom of the chart and measured by the right axis. The time periods of our sample, April 20 07, February 20 08, and April 

2008 (February 2017 and April 2017), are highlighted. 
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f informed traders, where they assume that aggressive order im-

alance is informative. In contrast, we explore not only how fea-

ures of BVC’s implementation affect the results generated by it,

ut also whether aggressive order flow is actually informative. In

ur data from less fragmented, European equity markets, we find

hat an out-of-sample calibrated BVC successfully captures the ag-

ressor side of trades and information, and it does so without re-

uiring costly, real-time analysis of low latency individual trade
nd quote data. This suggests that researchers can use BVC to both

lassify aggressors and measure information, while capturing the

ata efficiency gains inherent in BVC. 

The remainder of the paper proceeds as follows. Section 2 de-

cribes our data in detail. Section 3 describes the methodology

sed to detect trade aggressors, followed by a review of trade-level

nd bulk volume classification algorithms. Section 4 presents the

ain empirical results, including a discussion of calibration and
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f  

i  
other methodology refinements for improving the accuracy of BVC.

Section 5 specifically examines the ability of each algorithm to de-

tect underlying information in trade flow. Finally, Section 6 pro-

vides a brief conclusion. 

2. Data 

2.1. Data sets and samples 

We use two complementary data sets in our analysis. The first

set comes from NYSE Euronext “NextHistory” files. These data con-

tain all trades and quotes, and nearly all orders submitted (the ice-

berg orders that did not participate in trades are not included).

The data are time-stamped at the second-level. The second set,

from the London Stock Exchange (LSE), is built from the “Tick

Data” and “Rebuild Order Book” data. The former includes price

and volume information, while the latter provides daily order book

activity (trades, orders, deletions), which we need to determine

individual trade aggressors. These data are time-stamped at the

microsecond-level. 2 In both data sets, we focus exclusively on con-

tinuously traded equities (i.e., we drop non-equity instruments and

equities traded in daily call auctions). Both data sets can be pur-

chased from the respective exchanges. 

In total, our Euronext data files span a period of 19 months (Jan

20 07-Jul 20 08) and cover all stocks traded on Euronext Paris. LSE

makes data available back to 1996. To grapple with the size (and

cost) of the data we create two tractable samples from these data

sets. First, we choose sample periods. From Euronext, we use April

20 07, February 20 08, and April 2008, because these months rep-

resent different periods of volatility, stable-low, stable-high, and

dropping periods of volatility, respectively. From LSE, we choose

a much more recent sample, February and April 2017. These data

are characterized by lower, more stable volatility and much greater

trade volume. This is seen clearly in the volatility and volume

graphs of the CAC-250 and FTSE-350 indices contained in Fig. 1 .

Though testing across market-wide volatility conditions is useful,

even more importantly, these two samples have different periods

of algorithmic trading. The Euronext data represent a nascent pe-

riod of algorithmic trading and the LSE data a more mature period

( Hendershott and Riordan, 2013; Menkveld, 2013; Mahmoodzadeh

and Gençay, 2017 ). 

Our sample periods are useful because of the relatively greater

consolidation of listed firms’ equity trading on Euronext and the

LSE. We capture as much as 82.9% of all trading volume on Eu-

ronext, and 74.3% of all volume on the LSE for equities listed on

each exchange. Comparatively, in 2007, 63.7% of NYSE listed equi-

ties volume occurred on the NYSE exchange. This fell even further,

so that in 2017 only 30.6% of trading occurred on the NYSE. 3 This

also compares favorably to the TotalView-ITCH equities data avail-

able from NASDAQ for 2005 and 2011, which has roughly 16% to

26% of total volume. The higher volume share of Euronext and LSE

listed stocks make these data ideal for our tests, especially regard-

ing informed order flow. 

In addition to choosing sample periods, we choose a sample of

stocks to focus on. For Euronext, we take the 469 continuously-

traded French stocks common to all three time periods and then

form a random, representative sample of 100 stocks. Our Euronext

sample is comprised of thirty-four small-cap stocks, 33 mid-cap,

and 33 large-cap, which we define as those companies less than
2 Technically, to order trades within a millisecond, we use a microsecond- 

accurate ordering variable provided by LSE. 
3 NYSE listed on-exchange trading as a percentage of overall volume is taken di- 

rectly from NYSE Euronext 2 nd quarter 2007 operating data within the exchange’s 

reported financial results or obtained from the NYSE Market Data website at http: 

//www.nyxdata.com/Data-Products/NYSE-Volume-Summary . 

s  

o

s

a

1 billion, more than €1 billion but less than €10 billion, and those

ore than €10 billion, respectively. For the LSE we construct a

lightly larger sample of 125 U.K.-based listed equities across vary-

ng size groups (using 2017 euros converted from British pounds).

ummary statistics shown in Table 1 indicate that the samples in-

lude stocks of varying liquidity and volatility levels among capi-

alization groups. The list of included companies is provided in the

nternet appendix. 

Consistent with prior literature, our analysis excludes trades in

he first 15 min of the daily trading period to avoid opening call

uctions in our continuously traded sample ( Odders-White, 20 0 0 ).

ince Euronext stocks have closing call auctions, we also exclude

rades executed during the last 5 min of the daily trading pe-

iod. Therefore, our Euronext sample includes only trades executed

etween 09:15:00 and 17:25:00 CEST. 4 Similarly for LSE, we in-

lude only trades executed between continuous trading hours of

8:0 0:0 0 and 16:30:00 GMT and ignore trades conducted during

he 2-minute midday auction occurring at 12:0 0:0 0. We also im-

ose standard trade and quote filters on the data, such as positive

rice, volume, and quote size, and the bid must be weakly lower

han the ask. These filters result in approximately 210 and 335 gi-

abytes of trade, quote, and order data for Euronext and LSE re-

pectively. In contrast, our constructed time and volume bar data

cross all bar sizes and both samples use only 13.6 gigabytes, a

7.5% reduction in storage that demonstrates BVC’s data efficiency. 

.2. Aggressor side of trades 

To identify whether each trade in our sample is a buy or a

ell, we follow the definition of trade aggressor/initiator used in

dders-White (20 0 0) , which Ellis et al. (20 0 0) note is preferred

hen a researcher has access to the order book. She defines the

rade initiator based on chronological order arrival, that is, the or-

er that arrives second is the order that actually “initiates” the

rade. For example, if a market buy order comes in at 11:15AM

nd hits a limit sell order that had been standing in the book since

1:00AM, that trade would be classified as a buy for our purposes.

o determine the trade aggressor in our sample, we first classify

ully-executed orders into active and passive categories. An active

rder is executed at the same date and time as it is submitted to

he marketplace, and is, essentially, a market order. A passive order

s a non-market order whose execution time is always later than

ts submission time. In this case, the initiator of a trade will be the

pposite buy or sell direction of a matching passive order. Active

rders account for approximately 98% of trade aggressors identi-

ed across our sample. We construct a seven-stage procedure in

igning trades, the details of which are available in the internet

ppendix. Overall, untabulated results suggest that our procedure

erforms very well at identifying the trade aggressor (97.9% of to-

al trades). 

. Methodology 

.1. The bulk volume classification (BVC) algorithm 

.1.1. Overview 

The bulk volume classification procedure was developed in ELO

or use in the Easley et al. (2012) volume-synchronized probabil-

ty of informed trading (VPIN) calculation. It is designed to clas-

ify bars of trades (i.e., trades put in blocks either by time or
4 According to Euronext rules, from 07:15 until 09:00, orders accumulate in the 

rder book, at 09:00 orders in the central book are matched and an opening price 

is set. Stocks are then to trade continuously starting at 09:01 so we are being con- 

ervative in deleting the first 15 minutes. This process occurs at the end of the day 

s well, with orders accumulating in the book starting at 17:25. 

http://www.nyxdata.com/Data-Products/NYSE-Volume-Summary
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Table 1 

Sample Summary Statistics. 

Panel A displays the mean, standard deviation, median, minimum, and maximum market capitalization for each capitalization 

group, small, medium, and large, which we define as companies worth less than €1 billion, between €1 billion and €10 billion, 

and above €10 billion, respectively. All market capitalization numbers are in millions of 2017 euros. These summary statistics 

are taken over all months of our Euronext (April 2007 and 2008 and February 2008) and LSE (February 2017 and April 2017) 

subsamples. Panels B, C, and D display analgous statistics for daily traded volume, volume per second (Euronext), and volume 

per microsecond (LSE) for each capitalization group. 

Panel A: Market capitalization (mm 2017 EUR) 

N Mean Std Dev Median Min Max 

Small Cap 72 244.52 215.89 165.42 6.44 990.90 

Mid Cap 84 5,123.78 2,887.29 5,724.16 1,130.34 9,939.69 

Large Cap 69 35,482.59 33,384.80 22,496.23 10,788.75 154,698.53 

Total 225 12,872.45 23,931.01 5,337.50 6.44 154,698.53 

Panel B: Daily share volume 

N Mean Std Dev Median Min Max 

Small Cap 72 225,472 469,586 33,153 150 2,719,815 

Mid Cap 84 2,268,175 3,387,343 923,525 233 19,027,110 

Large Cap 69 9,849,100 26,468,510 2,978,475 900 207,374,215 

Total 225 3,939,327 15,272,101 750,925 150 207,374,215 

Panel C: Volume per second (Euronext subsample) 

N Mean Std Dev Median Mode Mode / Total 

Small Cap 34 649.40 1,680.61 211 100 5.239% 

Mid Cap 33 672.77 1,709.15 250 100 4.757% 

Large Cap 33 626.68 1,266.65 265 100 3.465% 

Total 100 634.18 1,353.92 261 100 1.852% 

Panel D: Volume per microsecond (LSE subsample) 

N Mean Std Dev Median Mode Mode / Total 

Small Cap 38 11,477.63 24,102.57 885 5,0 0 0 18.155% 

Mid Cap 51 1,639.33 1,503.97 559 100 3.390% 

Large Cap 36 2,624.98 3,183.19 679 100 3.562% 

Total 125 4,914.04 14,065.70 635 100 3.406% 
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methodology are further examined in Section 5 . Time bars, on the contrary, can 

never exceed their specified bar size. Only the final volume (time) bar in a stock- 

month may have lower volume (duration) than the specified bar size since the 

stock-month may terminate before the final bar is completely filled. 
8 We create bars continuously throughout a stock-month, meaning that if a vol- 
olume) 5 as a percentage of buys and sells, rather than classifying

ach individual trade. It was implemented this way to find large

rder imbalances, which would point to “flow toxicity.” It repre-

ents an attractive alternative to traditional classification methods,

articularly in situations where a researcher need only know the

ercentage of buys and sells in the data (rather than the direction

f individual trades) such as the calculation of VPIN introduced

y Easley et al. (2012) . By putting the trades into volume blocks,

he algorithm mitigates any impact from order splitting and econ-

mizes on the number of data points used for classification. For

nstance, using time or volume bars in our analysis, the best over-

ll accuracy is achieved using only 0.21% of the individual trade

ata points. This represents an incredible difference in computing

torage resources. Whereas the tick test may take days to run, BVC

ith a large, appropriately chosen block size can be implemented

n a matter of minutes (even the bulk tick test method, discussed

ater, must run the standard tick rule prior to aggregation). 

.1.2. Implementation 

We apply the BVC algorithm using the Perl programming lan-

uage, directly adapted from the example Python code provided by

LO. 6 The implementation in the Euronext and LSE data is similar,

ut for LSE the following is at the microsecond, rather than the

econd, level. First, we aggregate trade data to the second. Bars are

lled with consecutive trade seconds until the specified bar size

s met or exceeded, 7 then the working bar data is stored in a re-
5 ELO use trade bars in addition to volume and time bars. We do not include 

rade bars since trade size distributions in the equities market are not concentrated 

nd discrete as in the futures market. 
6 We thank David Easley, Marcos Lopez de Prado, and Maureen O’Hara for making 

his code available. 
7 Volume bar size can be exceeded if the final added trade second contains more 

olume than the specified bar size. The benefits of this volume bar construction 
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ational database and construction of the next bar begins if addi-

ional trade second data is available. 8 Next, for each stock-month

ombination, we calculate the volume-weighted standard deviation

f price changes between consecutive bars as shown in formula

1) . 

�P i = 

√ ∑ n 
τ=1 V i,τ

(
�P i,τ − �P i 

)2 ∑ n 
τ=1 V i,τ

(1) 

here V i, τ is the actual volume of shares traded of stock-month i

uring the time or volume bar τ which is decomposed into the

uy ( ̂  V 
Buy 
i,τ

) and sell ( ̂  V Sell 
i,τ

) volume estimate components. �P i,τ =
 i,τ − P i,τ−1 is the price change between two consecutive bars. With

hese available data points, we can then use formula (2) of ELO to

alculate BVC’s buy volume for each bar: 

ˆ 
 

Buy 
i,τ

= V i,τ · t 

(
P i,τ − P i,τ−1 

σ�P i 

, df 

)
ˆ 
 

Sell 
i,τ = V i, τ − ˆ V 

Buy 
i,τ

= V i, τ ·
[

1 − t 

(
P i,τ − P i,τ−1 

σ�P i 

, df 

)]
(2) 
me bar is unfilled at the end of continuous trading on 15 April it will continue 

o fill with trades when continuous trading resumes on 16 April. This does not ap- 

ly to time bars, which are truncated at the end of the trading day. Further, unlike 

hakrabarty et al. (2015) , our implementation does not use “fixed” time bar be- 

inning and ending timestamps. Muravyev and Picard (2016) find that algorithmic 

rader synchronization occurs at round start times. To address this periodicity, we 

se “dynamic” timestamps for a time bar begin when the first trade occurs and 

nds with the last trade within the specified bar size. Time bar construction is dis- 

ussed in greater detail in Section 5 . 
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The price associated with each bar, P i, τ , is the price of the last

trade within that particular bar and t is simply the cumulative

density function of Student’s t -distribution with degrees of free-

dom. Following ELO, we perform our baseline analysis using 0.25

degrees of freedom. 

3.2. Tick test and LR algorithms 

3.2.1. Overview 

The Lee and Ready (1991) trade classification algorithm is

widely used in market microstructure. The algorithm uses the

quote rule when trades are not at the midpoint, any trade price

above (below) the midquote is a buy (sell), and at the midquote it

uses the tick rule. The tick rule compares the current trade price

to the previous price. When the price is higher (lower) than the

previous price, the trade is classified as a buy (sell). Because it is

also common to use the tick rule as a standalone algorithm (which

we will refer to as the tick test method), we use the results from

both LR and the tick test as comparisons for BVC. Because BVC puts

trades into bars and offsets misclassifications, we compute bulk

versions of LR and the tick test to better compare across algorithms

( Chakrabarty et al., (2015) ; ELO, 2016). 

3.2.2. Implementation 

Since the Euronext data do not provide sub-second timestamps,

we collapse trades at the second level using volume-weighted

average price (VWAP; similar to Boehmer and Kelly, 2009 ) when

implementing trade-level LR and tick. 9 We do this to simplify

the trade flow because we cannot observe the exact ordering

of the trades within a second in our Euronext data. Although

one potential criticism of our Euronext trade level algorithm

implementations is this lack of millisecond timestamps (as in

daily TAQ), we believe it emphasizes the classification issues

facing researchers. Our LSE data exhibit the same clustering, with

many trades that occur within the same microsecond, though

each trade contains a unique identifier that allows us to sequence

the data correctly. This inadequacy of more granular data is also

observable in other recent equity data (e.g., Muravyev and Picard,

2016; Conrad et al., 2015 ). O’Hara (2015) argues that continually

seeking a perfect data set is not a solution since the underlying

trading intentions of an order can be masked in an environment

of fast-paced, fragmented markets. 

We also have to establish a prevailing quote to be in force in a

given second when there are multiple quotes in that second for the

Euronext data. We treat quotes in the same second with the same

bid and ask prices but different sizes (approximately 49% of sample

quotes) as one quote. For any multiple-quote seconds that remain

(approximately 28% of sample quotes), we take the best bid and

offer (BBO) for each stock-second. In the rare cases (0.4% of sample

quotes, or just less than 130,0 0 0 quotes for the Euronext data) in

which that process creates a crossed quote (i.e., the offer is less

than the bid), we just take a midpoint and set both the bid and

ask equal to it. 10 This process establishes a single prevailing BBO

quote for each firm-second in the sample, which allows us to sign

trades using the LR classification algorithm. For LSE data, we use

order data to reconstruct the limit order book at the microsecond

timestamp of each trade to obtain the BBO. 
9 Collapsing at the price-second level results in a slight increase in accuracy, but 

the advantage of VWAP is it does not assume an order for same-second trades 

that occur at different prices, at the cost of reduced granularity. Unfortunately, be- 

cause we do not know trade or quote ordering within a second for our Euronext 

data, we cannot implement the interpolated time method from Holden and Jacob- 

sen (2014) and are forced to aggregate to the second-level. 
10 Dropping trades matched to crossed quotes from the analysis does not signifi- 

cantly impact bulk LR accuracy rates. 
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d

q
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Finally, trades are matched to quotes and signed according to

he quote and tick rules to implement LR and the tick rule only

or the tick test. These LR and tick test classified trades are then

atched to sample trades for which a trade aggressor could be

stablished (97.9% of full sample trades). Then, we aggregate our

rades into volume and time bars mirroring BVC. 

. Performance 

.1. Accuracy in detecting trade aggressors 

First, we examine how well BVC, bulk tick test, and bulk LR do

n matching aggressor trade classification. Table 2 displays accu-

acy rates for volume and time bars in Panels A and B respectively.

or both panels, columns 1–3 present results for the Euronext sam-

le, and columns 4–6 for the LSE sample. The BVC algorithm uses

tudent’s t -distribution with 0.25 degrees of freedom. 

We first note that the accuracy rates are lower than those re-

orted in ELO, who use futures data; their accuracy rates top 94%

ersus 89% in our analysis. We expect lower accuracy in equities

ecause of greater heterogeneity in stock trading characteristics

s well as because blocks of buys and sells have disparate price

mpact in equities markets ( Chan and Lakonishok, 1993; Berkman

t al., 2005 ). This difference in price impact should lower the over-

ll accuracy rates of BVC because the algorithm uses symmetric

istributions (e.g. Student’s t -distribution) to estimate buy volume

n a bar. For example, consider a 50,0 0 0 share volume bar com-

osed of a buy and sell, both of 25,0 0 0 shares. Asymmetric price

mpact suggests there will be a price change, which means BVC

ill not classify buy volume as 50%, and will thus be expected to

ave lower accuracy. 

Despite this challenge, BVC performs well in our two sam-

les. Regarding the Euronext sample (columns 1–3 of Table 2 )

VC accuracy ranges from 62.62% to 87.90% in Panel A with vol-

me bars, and from 58.66% to 89.68% in Panel B with time

ars. These peak accuracy rates exceed the rates reported in

hakrabarty et al. (2015) NASDAQ sample. We do find, however,

hat just like ELO and Chakrabarty et al. (2015) , BVC accuracy

ates are lower than bulk tick test and bulk LR at all comparable

ar sizes. These algorithms’ accuracy ratios range from 78.14% to

5.50%, and though their accuracy is similar, we find that bulk tick

est is more accurate than LR in every bar size. Given that LR re-

uires quote data, it is dominated in the Euronext sample by the

ick test, which is more accurate and more data efficient. 

In the LSE sample (columns 4–6) we see some important dif-

erences from the Euronext results. First, accuracy rates are lower

or BVC, as well as bulk tick test and bulk LR. This change in ac-

uracy is likely a consequence of increasing speed and volume in

quities markets highlighted in Table 1 , which shows much more

olume in the LSE sample, though with a more granular times-

amp (microsecond vs. second). In Panel A, BVC accuracy ranges

rom 53.22% to 75.68% using volume bars; in Panel B, using time

ars, the accuracy is much better, ranging from 60.30% to 87.14%.

he accuracy of bulk tick test and bulk LR ranges from 39.65% to

3.75% (across both volume and time bars), lower than BVC in all

ases. This stark reversal in relative accuracy suggests that increas-

ng market speed makes it increasingly difficult for trade-level al-

orithms (even when assembled into bars). 11 
11 BVC accuracy is particularly impressive given that Euronext (LSE) trade level 

ata are compressed by 68.36% to 99.87% (76.83% to 99.89%). Running LR re- 

uires quote data, adding almost 19 million Euronext quote and 369 million 

SE order observations, vastly increasing the rate of compression BVC offers. 

hakrabarty et al. (2015) find that algorithm CPU time between the tick test and 

VC are comparable. However, the data efficiency advantage of BVC has benefits in 

practical implementation. For example, several market data providers can transmit 
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Table 2 

Algorithm Accuracy Comparison. 

This table displays the accuracy results from bulk volume classification (BVC), bulk 

tick test (Bulk Tick), and bulk Lee & Ready algorithms (Bulk LR) in classifying the 

aggressor side of the trade. Each algorithm is implemented so that the unit of ob- 

servation is monthly trade data. Panel A displays results for volume bar aggregation 

and Panel B shows the results for time bar aggregation. Results for the Euronext 

and London Stock Exchange (LSE) subsamples are shown separately, indicated by 

column header. 

Euronext (20 07–20 08) Sample LSE (2017) Sample 

BVC Bulk Tick Bulk LR BVC Bulk Tick Bulk LR 

Panel A: Volume bars 

1,0 0 0 62.62% 79.85% 78.58% 53.22% 39.65% 46.16% 

2,500 68.86% 81.17% 80.26% 56.82% 41.17% 46.47% 

5,0 0 0 73.97% 82.80% 82.17% 60.30% 43.94% 47.41% 

10,0 0 0 78.75% 84.93% 84.58% 64.03% 47.66% 48.69% 

15,0 0 0 81.16% 86.31% 86.09% 66.28% 50.37% 49.69% 

20,0 0 0 82.71% 87.29% 87.15% 67.81% 52.72% 50.78% 

25,0 0 0 83.73% 88.07% 87.98% 69.11% 54.35% 51.25% 

30,0 0 0 84.52% 88.69% 88.61% 70.02% 55.96% 52.14% 

40,0 0 0 85.62% 89.66% 89.59% 71.48% 58.43% 53.20% 

50,0 0 0 86.32% 90.35% 90.34% 72.55% 60.28% 54.12% 

75,0 0 0 87.37% 91.57% 91.53% 74.44% 63.57% 55.84% 

10 0,0 0 0 87.90% 92.36% 92.27% 75.68% 65.88% 57.17% 

Panel B: Time bars 

2 s 58.66% 79.32% 78.14% 60.30% 39.90% 46.03% 

5 62.51% 79.94% 79.06% 62.90% 43.01% 47.05% 

10 65.73% 80.60% 79.93% 65.59% 46.56% 48.27% 

30 71.78% 82.32% 81.96% 70.81% 54.35% 51.18% 

60 75.87% 83.92% 83.72% 74.14% 60.05% 53.62% 

120 79.80% 85.87% 85.79% 77.18% 65.59% 56.46% 

300 84.16% 88.65% 88.66% 80.45% 71.70% 60.68% 

600 86.57% 90.66% 90.64% 82.37% 75.33% 64.21% 

1,200 88.27% 92.41% 92.28% 83.94% 78.24% 68.02% 

1,800 88.90% 93.24% 93.07% 84.78% 79.87% 70.40% 

3,600 89.65% 94.49% 94.15% 86.03% 81.94% 74.27% 

7,200 89.68% 95.50% 94.92% 87.14% 83.75% 77.81% 
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.2. Can the algorithms detect informative flow? 

.2.1. Overall spread results 

Although accuracy in classifying the aggressor side of trades

as been our focus thus far, it is also important to examine un-

erlying information. Informed traders are increasingly relying on

assive orders, i.e., limit orders (which can be exacerbated by or-

er splitting), to disguise themselves in the market (see, for exam-

le, Bouchaud et al., 2009; Menkhoff et al., 2010; Zhang, 2013 es-

imates the probability of informed liquidity provision to be 85%

ost-decimalization). These changes in informed trading raise two

ssues, which we explore in this section. First, can BVC detect in-

ormed trading? Second, is the identification of individual trade ag-

ressors still important in measuring informative order flow? To

xamine these issues, we run regressions like those in ELO, re-

ressing various spread estimates on estimated absolute order im-

alance and lagged spread estimates, 

prea d τ = α0 + α1 [ Sprea d τ−1 ] + γ
∣∣̂ OI τ

∣∣ + ε τ , (3)

here the estimated absolute order imbalance ( OI ) is defined as 

̂ OI τ
∣∣ = 

∣∣∣∣ ˆ V 

B 
τ − ˆ V 

S 
τ

V τ

∣∣∣∣ = 

∣∣∣∣2 

ˆ V 

B 
τ

V τ
− 1 

∣∣∣∣ (4) 

ELO argue that if an algorithm is capturing underlying infor-

ation, then absolute order imbalance should be positively related
ar, as opposed to trade, level data. This will reduce network bandwidth utiliza- 

ion. Similarly, necessary algorithmic back-testing of BVC requires less data storage 

apacity. 

a  

i  
o spread in bar τ . Theory in market microstructure predicts that

ith more informed trading, liquidity is affected as market makers

iden spreads to protect themselves. 

An issue here is how to measure our spread variable. Because

VC uses volatility as an input in its estimation, any possible re-

ation of volatility to our spread measure could give us noisy or

ven spurious correlations. Therefore, we choose the Corwin and

chultz (2012) estimated spread measure, which specifically re-

oves underlying asset volatility, and only extracts the illiquid-

ty feature of the high-low price range for each bar. This measure

s also used by ELO. In addition, we calculate intraday effective

preads as an alternative to the Corwin-Schultz measure. Effective

preads have been widely used in the literature to capture illiquid-

ty, and they also seem unrelated to volatility ( Chakrabarty et al.,

015 ; Table 6 ). We calculate effective spreads at the second (mi-

rosecond) timestamp level for the Euronext (LSE) sample and then

ake volume-weighted average over the bar period. For order im-

alance, we use the ones based on BVC and bulk tick test esti-

ates, respectively, as well as order imbalance based on actual

rade aggressors, which are known in our data sets. Table 3 con-

ains the results of these regressions for a selection of different

olume bar sizes. 12 Note that from this table forward we do not

eport results for LR because we find that it is dominated by the

ick test in our samples (in terms of data efficiency, accuracy, and

nformation detection). 

Every regression includes stock and sample-month fixed effects,

nd standard errors are clustered by stock. Using stock-fixed effects

s econometrically important since it can capture stock-specific
12 Unreported results for time bars are similar. 
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Table 3 

Spread Regressions on Order Imbalance. 

This table displays results from the regression, Sprea d τ = α0 + α1 [ Sprea d τ−1 ] + γ | ̂  OI τ | + ε τ , with the addition of firm and month 

fixed effects. Please see the text for variable definitions. We measure within-bar order imbalance using BVC, bulk tick test (Tick 

OI), and trade aggressor (Aggressor OI), which is based on each trade’s initiator, known in our data. Panel A displays results using 

the Corwin and Schultz (2012) estimator and Panel B uses volume-weighted effective spread within each bar. We display the order 

imbalance coefficient and its t -statistic for each spread measure and each imbalance measure. Standard errors are clustered by firm. 
∗∗ and ∗ denote statistical significance at the 1% and 5% levels. 

Bar size BVC OI estimate Tick OI estimate Aggressor OI Observations 

Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) 

Panel A: Corwin-Schultz spread estimator 

1,0 0 0 0.015 ∗∗ 3.04 0.004 ∗∗ 4.50 0.003 ∗∗ 4.76 6,285,058 

5,0 0 0 0.028 ∗∗ 3.53 0.004 ∗∗ 4.36 0.003 ∗∗ 4.23 2,536,332 

10,0 0 0 0.031 ∗∗ 3.38 0.003 ∗∗ 3.51 0.002 ∗∗ 3.56 1,529,693 

30,0 0 0 0.028 ∗∗ 3.24 0.001 0.91 0.0 0 0 -0.83 611,580 

50,0 0 0 0.029 ∗∗ 3.38 -0.001 -1.34 -0.001 -1.93 385,250 

10 0,0 0 0 0.024 ∗∗ 3.23 -0.002 -1.63 -0.003 ∗ -2.01 200,876 

Mean effect 0.023 ∗∗ 3.52 0.002 ∗ 1.97 0.0 0 0 1.16 

Panel B: Effective spread 

1,0 0 0 0.260 ∗ 2.52 -0.013 ∗ -2.63 -0.025 ∗∗ -3.63 6,314,070 

5,0 0 0 0.747 1.58 -0.020 ∗ -2.15 -0.016 ∗∗ -2.65 2,548,550 

10,0 0 0 0.460 ∗ 2.42 -0.044 -1.70 -0.038 -1.55 1,537,894 

30,0 0 0 0.131 ∗ 2.28 -0.018 -1.83 -0.018 -1.93 614,859 

50,0 0 0 0.301 1.89 -0.018 -1.54 -0.018 -1.89 387,041 

10 0,0 0 0 0.107 ∗ 2.35 -0.016 -1.56 -0.023 -1.54 201,267 

Mean effect 0.151 1.44 -0.016 -1.41 -0.020 -1.71 
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13 In Tables 4 and 5 , we estimate the mean effect sizes by weighting each re- 

gression coefficient by the reciprocal of the squared standard error. We estimate 

cross-bar size dependence using the ratio of the true to estimated standard errors 

found in Chordia et al. (20 0 0, 20 05) ( [ 1 + 2( N − 1 ) ρ] 
1 
/ 2 ). 
characteristics that have been shown to affect spreads, such as

market capitalization and volatility. Sample-month fixed effects

could capture overall market characteristics that affect spreads

(e.g., upturn or downturn markets, periods of high and low market

volatility, etc.). In the table, our three order imbalance measures

are shown column-wise, with the imbalance coefficient ( γ ) and its

t -statistic reported for each measure. Each panel of the table uses

a different spread estimate. 

Panel A contains the regression results using the Corwin and

Schultz spread measure. Consistent with ELO, the γ coefficients

are significantly positive across all bar sizes for BVC. In contrast,

although bulk tick test and aggressor order imbalances have posi-

tive and significant coefficients over the first three sizes, the coef-

ficients are insignificant for the size of 30,0 0 0, and then turn neg-

ative and significant. 

These patterns are exaggerated in Panel B using volume-

weighted effective spread. The γ coefficients for BVC are all sig-

nificantly positive with larger magnitudes, but every coefficient is

either insignificant or negative for the other two imbalance esti-

mates. These results indicate that when BVC order imbalance is

large the spread measures are also large. Since spreads reflect the

possible price impact due to adverse selection, this is what theory

would predict for the presence of informed order flow. Thus, the

negative coefficients for bulk tick test and aggressor imbalances

reveal two important takeaways. First, bulk tick test does not cap-

ture underlying informative flow, while BVC does match high or-

der imbalances with higher spreads. Second, and more importantly,

knowing the aggressor imbalance is not sufficient in modern mar-

kets to detect informed order flow. This suggests algorithms de-

signed to flag aggressors cannot capture information. We explore

this further below. 

4.2.2. Spread results in subsamples 

In Table 4 , we focus on separate subsamples of small and large

absolute returns. We expect the large absolute return subsample,

which we define as bars with returns in the first or fourth quar-

tile of non-absolute returns (for each bar size), to contain more in-

formed trading due to larger price movements. Just as in Table 3 ,

Panel A of Table 4 shows regression results for each OI estimate
sing the Corwin and Schultz (2012) spread measure, and Panel B

ses volume-weighted effective spreads for each bar. 

Since the BVC algorithm uses returns in its calculation, it is not

urprising to find that BVC OI estimates relate more strongly to

he spread measure for the large absolute return subsample. The

ifference is in the magnitude as well as the sign: the mean co-

fficient is 0.086 for the subsample of large absolute return bars

ersus -0.001 for small absolute return bars. 13 Interestingly, the

ick and aggressor OI measures have similar results. In the large

eturns subsample, the coefficients are small and positive for small

ars and negative for larger bars. The results in Panel B using effec-

ive spread are along the same lines, but with starker differences.

or BVC, the coefficients in the small return subsample are close to

ero, and only one is significant. All coefficients using the tick or

ggressor OI are negative, and most are significant. 

To test whether it is informed, passive orders that render bulk

ick test unable to detect underlying information, we run the

pread regressions in subsamples that are likely to contain in-

ormed trading using limit orders. Baruch et al. (2016) find that

hen borrowing costs are high for investors (when firms are not

ndex members or when there is no options market) informed

raders tend to use passive orders more often. If simply correctly

lassifying the aggressor side of a trade is no longer sufficient in

etecting the underlying trading information, then bulk tick test’s

nverse relation between estimated order imbalance and spread

easures should be exacerbated here. 

In Table 5 , we run the regressions separately for firms that do

nd do not have an active options market. We define active op-

ions market as any options volume in the Bloomberg Terminal

or that stock month. Again Panels A and B use the Corwin and

chultz (2012) spread and effective spread as measures of illiquid-

ty. The γ coefficients are positive for all regressions using BVC,

ith roughly equal coefficients across subsamples. Bulk tick test

nd aggressor results show similar patterns to those in Table 3 in
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Table 4 

Spread Regressions on Order Imbalance - Return Subsamples. 

This table displays results from the regression, Sprea d τ = α0 + α1 [ Sprea d τ−1 ] + γ | ̂  OI τ | + ε τ , with the addition of firm and month fixed effects. Please 

see the text for variable definitions. We measure within-bar order imbalance using BVC, bulk tick test (Tick OI), and trade aggressor (Aggressor 

OI), which is known in our data. Panel A displays results using the Corwin and Schultz (2012) estimator and Panel B uses the volume-weighted 

effective spread in the bar. We display the order imbalance coefficient and its t -statistic for each spread measure and each imbalance measure. The 

regressions are further split by magnitude of returns, using large (first or fourth quartile of returns) and small (second or third quartile of returns). 

The distribution of returns that defines the quartiles is estimated for each bar. Standard errors are clustered by firm. The aggregated coefficients 

are weighted by the reciprocal of the squared standard error for each regression specification and the aggregate standard errors are corrected using 

the method from Chordia et al. (20 0 0) . ∗∗ and ∗ denote statistical significance at the 1% and 5% levels. 

BVC OI Estimate Tick OI Estimate Aggressor OI 

|Large ret| |Small ret| |Large ret| |Small ret| |Large ret| |Small ret| 

Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) 

Panel A: Corwin-Schultz estimator 

1,0 0 0 0.076 ∗∗ 3.79 -0.001 ∗∗ -6.31 0.003 ∗∗ 3.79 0.004 ∗∗ 4.59 0.003 ∗∗ 4.39 0.002 ∗∗ 4.92 

5,0 0 0 0.111 ∗∗ 4.45 -0.001 ∗∗ -4.14 0.001 ∗∗ 2.60 0.005 ∗∗ 4.11 0.002 ∗∗ 4.11 0.002 ∗∗ 4.08 

10,0 0 0 0.114 ∗∗ 4.20 -0.001 -1.64 -0.001 -1.25 0.005 ∗∗ 3.52 0.001 ∗ 2.60 0.002 ∗∗ 3.42 

50,0 0 0 0.085 ∗∗ 3.96 -0.002 -1.10 -0.005 ∗∗ -3.15 0.002 ∗∗ 2.18 -0.004 ∗∗ -3.07 0.0 0 0 0.86 

10 0,0 0 0 0.070 ∗∗ 3.85 -0.007 -1.22 -0.007 ∗∗ -3.15 0.001 0.94 -0.008 ∗∗ -3.29 0.0 0 0 0.07 

Mean effect 0.086 ∗∗ 4.33 -0.001 ∗∗ -3.83 0.001 0.99 0.003 ∗∗ 3.30 0.001 ∗ 2.35 0.001 ∗∗ 3.09 

Panel B: Effective spread 

1,0 0 0 1.721 ∗∗ 2.74 0.0 0 0 -0.09 -0.022 ∗∗ -2.93 -0.007 ∗∗ -3.05 -0.034 ∗∗ -3.38 -0.001 -0.65 

5,0 0 0 2.350 1.64 0.0 0 0 ∗∗ 7.00 -0.028 -1.88 -0.005 ∗∗ -3.56 -0.022 ∗ -2.33 -0.002 ∗∗ -2.75 

10,0 0 0 1.370 ∗∗ 2.71 0.0 0 0 0.02 -0.077 -1.60 -0.006 ∗∗ -2.28 -0.070 -1.45 -0.004 ∗ -2.51 

50,0 0 0 0.786 1.95 -0.002 -1.47 -0.034 -1.66 -0.002 -0.99 -0.038 ∗ -2.19 -0.002 -1.32 

10 0,0 0 0 0.241 ∗ 2.45 -0.007 -1.50 -0.026 -1.63 -0.005 -1.21 -0.044 -1.60 -0.004 -1.48 

Mean effect 0.349 1.28 0.0 0 0 ∗ 2.50 -0.025 -1.46 -0.005 -1.84 -0.030 -1.67 -0.002 -1.42 

Table 5 

Spread Regressions on Order Imbalance – Options Trading Subsamples. 

This table displays results from the regression, Sprea d τ = α0 + α1 [ Sprea d τ−1 ] + γ | ̂  OI τ | + ε τ , with the addition of firm and month fixed effects. Please 

see the text for variable definitions. We measure within-bar order imbalance using BVC, bulk tick test (Tick OI), and trade aggressor (Aggressor 

OI), which is known in our data. Panel A displays results using the Corwin and Schultz (2012) estimator and Panel B uses the volume-weighted 

effective spread in the bar. We display the order imbalance coefficient and its t -statistic for each spread measure and each imbalance measure. 

The regressions are further split by whether the stock had any options trading data in Bloomberg in our sample windows. Results using index 

membership are included in the appendix ( Table 8 A). Standard errors are clustered by firm. The aggregated coefficients are weighted by the re- 

ciprocal of the squared standard error for each regression specification and the aggregate standard errors are corrected using the method from 

Chordia et al. (20 0 0) . ∗∗ and ∗ denote statistical significance at the 1% and 5% levels. 

BVC OI Estimate Tick OI Estimate Aggressor OI 

Options market No options Options market No options Options market No options 

Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) Coef( γ ) t( γ ) 

Panel A: Corwin-Schultz estimator 

1,0 0 0 0.016 ∗∗ 2.73 0.011 1.44 0.004 ∗∗ 3.88 0.005 ∗∗ 2.67 0.003 ∗∗ 4.12 0.003 ∗∗ 2.77 

5,0 0 0 0.028 ∗∗ 3.00 0.028 ∗ 2.25 0.004 ∗∗ 3.82 0.004 ∗∗ 2.90 0.002 ∗∗ 3.62 0.003 ∗∗ 3.38 

10,0 0 0 0.033 ∗∗ 2.89 0.027 ∗ 2.15 0.003 ∗∗ 3.20 0.002 ∗ 2.09 0.002 ∗∗ 3.15 0.002 ∗∗ 3.27 

50,0 0 0 0.030 ∗∗ 2.86 0.025 ∗ 2.40 -0.001 -1.13 -0.002 -0.89 -0.001 -1.86 -0.001 -0.44 

10 0,0 0 0 0.025 ∗∗ 2.74 0.022 1.94 -0.002 -1.47 -0.003 -0.90 -0.004 -1.89 -0.001 -0.47 

Mean effect 0.023 ∗∗ 2.96 0.020 ∗ 2.16 0.002 1.87 0.002 1.69 0.001 1.85 0.002 ∗ 2.46 

Panel B: Effective spread 

1,0 0 0 0.079 ∗∗ 2.97 1.028 ∗ 2.02 -0.008 ∗∗ -3.13 -0.040 -1.40 -0.008 ∗∗ -2.67 -0.132 ∗∗ -2.69 

5,0 0 0 0.061 ∗∗ 3.24 3.350 1.44 -0.006 ∗∗ -3.31 -0.108 -1.49 -0.003 ∗ -2.09 -0.106 ∗ -2.12 

10,0 0 0 0.055 ∗∗ 3.10 1.949 ∗ 2.18 -0.005 ∗∗ -3.03 -0.332 -1.49 -0.002 ∗ -2.15 -0.307 -1.42 

50,0 0 0 0.032 ∗∗ 3.07 1.299 1.78 -0.001 -1.64 -0.166 -1.51 -0.001 -1.25 -0.176 -1.94 

10 0,0 0 0 0.043 1.95 0.379 1.86 0.0 0 0 0.22 -0.164 -1.69 0.0 0 0 0.24 -0.227 -1.73 

Mean effect 0.045 ∗ 2.29 0.595 1.12 -0.002 -1.25 -0.066 -0.90 -0.002 -1.13 -0.136 -1.46 
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14 We find similar results in Table 5A of the internet appendix when we look sep- 

arately for firms that belong and do not belong to a major stock index. 
oth subsamples. The coefficients are positive and significant in

mall bars, but are insignificant in the larger bars. The signs and

agnitudes are such that the mean effects are insignificant, except

or the aggressor OI measure in the subsample without options

rading. In Panel B, the γ coefficients estimated using BVC are all

ositive, though with higher variation. The no options mean effect

s insignificantly larger using effective spread. The coefficients us-

ng bulk tick test and aggressor OI are mostly insignificant in Panel

 (the point estimates have negative signs). The mean effects in

he no options markets subsamples tend to be more strongly neg-

tive than those in the subsample with an options market. The re-

ults of Table 5 suggest that when informed traders trade passively,
rade level algorithms appear less capable of capturing informed

rder flow (i.e., a higher absolute OI is associated with a narrower

pread). 14 

Overall, the results in the last three tables suggest that BVC-

ased order imbalances do well at detecting underlying informa-

ion in comparison to order imbalances derived from identifying

ndividual trades as buys or sells. If knowledge of the true aggres-

or side of individual trades no longer adequately captures infor-
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mative buying and selling activity, the utility of using tick test and

LR algorithms to classify trades is diminished. This is exacerbated

in subsamples likely to contain informed trading (large returns)

and subsamples in which informed traders are likely to use pas-

sive orders. 

5. Can BVC’s ability to find traditional buy/sell pressure 

improve? 

Results in Section 4 suggest BVC is the better choice when re-

searchers are interested in detecting information, but that tradi-

tional algorithms are successful at identifying trade aggressors. In-

formation is generally of utmost importance, but, as mentioned

above, in some situations researchers want to detect traditional

buying and selling pressure based on trade initiators, such as when

calculating maker-taker fees, measuring trading costs, or identify-

ing investor clienteles. Therefore, we are interested in capitalizing

on BVC’s data and information advantage while making its aggres-

sor accuracy comparable to the other methods. While tick and LR

cannot be calibrated because they are inherently trade-level, the

heterogeneity of equity trade distributions, in terms of both size

and arrival time, suggests that BVC should not be applied uni-

formly across different stocks. We examine several ways of cali-

brating BVC in this section: (1) choice of bar size and price change

t -distribution degrees of freedom ( df ) parameter (2) time spacing

and weighting considerations, and (3) exact versus minimum vol-

ume bar sizes. We then turn to how this calibration relates to its

ability to detect information. 

5.1. Calibrating BVC 

5.1.1. Netting and bar size/distribution calibration 

The choice of bar size affects BVC and bulk tick test/LR in very

different ways. Tick and LR are trade-level; we use them to sign

individual trades, and then aggregate those trades into volume or

time bars. As noted in ELO and Chakrabarty et al. (2015) , aggrega-

tion will offset misclassified trades, thereby increasing accuracy in

the bar. Indeed, one can see in Table 2 that accuracy monotonically

increases with bar size for these algorithms. On the other hand, it

is less clear how bar size choices will affect BVC, because bar size

influences the distribution of price changes across bars. In other

words, as bar size changes, the numerator (price changes), the de-

nominator (weighted standard deviation of price changes), and the

df for the CDF in formula (2) will change. 

To help us consider how df might be calibrated to certain secu-

rities, we visually examine excess kurtosis of price change distribu-

tions and how they vary with time bar size and firm size in Fig. 2 .

There is substantial variation in distribution shape across both bar

and firm size dimensions. In particular, excess kurtosis tends to be

lower for larger bars and for smaller capitalization stocks. 

To adjust the shape of the distribution to kurtosis heterogeneity,

we introduce an additional distribution parameter calibration, mo-

tivated by the return distribution analysis of Bakshi et al. (2003) ,

which lowers the degrees of freedom in the t -distribution from

0.25 to 0.05 (0.1) for large (mid) cap stocks. 15 

5.1.2. Temporal spacing and weighting 

To further investigate the effect of bar size choice on BVC ac-

curacy, we consider scenarios in which bar size can either be “too

small” or “too large,” given the distribution of trade sizes. In par-

ticular, with respect to time bars, if the bar size is too small, the
15 Bakshi et al. (2003) identify that the returns distribution kurtosis across stocks 

increases with market capitalization so, we follow their return distribution analysis 

by reducing the degrees of freedom in the large and mid-cap group Student’s t - 

distributions to 0.05 and 0.1, respectively. 

(  

t  

t  

d  

v

ar will not contain enough trades to benefit from netting mis-

lassified trades. This reduced netting will impact both bulk tick

est/LR and BVC algorithms. At the same time, however, a greater

umber of smaller bars will lead to a smaller standard deviation of

rice changes which will only impact BVC and not bulk trade level

lgorithms. To better see this effect, we present the mean volume

ithin time bars in Panel A of Table 6 . 

For small capitalization stocks, average bar volume does not in-

rease with time bar size as much as it does for large capitalization

tocks. For example, mean volume in five second bars is similar for

mall and large capitalization stocks at 3943 and 4168 shares, re-

pectively. However, in a 10 min bar the mean volume is 13,326

nd 128,734 shares for small and large capitalization stocks, re-

pectively. Because of this small increase in mean volume for small

ap stocks, a greater proportion of bars will likely have small price

hanges and thus bars will be more evenly weighted between buys

nd sells using BVC. Indeed, we believe that this is why BVC small

ar accuracy results are low in Table 2 . 

On the other hand, if bars are “too large” and thus consecutive

ars are too far apart in time, the price of the previous bar can

ecome “stale” and much of the useful price variation within the

urrent bar can be lost. This will affect BVC more than bulk tick

est since a fundamental difference between the two algorithms is

he duration of time that elapses between consecutive data points.

n the case of the tick test, this time period is determined only

y the arrival distribution of trades. Duration between time points

or BVC, however, is influenced by both the distribution of trades

nd the choice of bar size. Slower trade arrival will result in longer

ime periods between volume bars since they will take more time

o fill completely. Holding trade arrival constant, increasing volume

ar size will have a similar effect. For time bars, since the dura-

ion of the bar is predefined, this temporal effect is driven by the

hoice of bar size as well as the presence of empty (zero volume)

ime bars, which increase the temporal distance between bars that

enerate price differences. Since less liquid stocks see longer and

ore frequent periods of trading inactivity, they are more likely

o have time bars that are unequally spaced and contain very low

olume. 

To assess the potential impact of “staleness” in BVC imple-

entation, we present the time elapsed between trades and vol-

me/time bars for our sample in Panels B and C of Table 6 . In

anel B, time elapsed between consecutive volume bars is much

onger for small capitalization stocks, due in part to lower liq-

idity and trading frequency. For a volume bar size of 50,0 0 0,

mall capitalization stocks see an average of 7651.69 s between

onsecutive bars. Considering that there are 29,400 (30,480) sec-

nds within each trading day in our Euronext (LSE) sample, this

epresents only 3.84 (3.98) volume bars per day. A standard de-

iation for 50,0 0 0 bar size of 10,021.6 s suggests that some small

ap stocks may have as few as two volume bars in a given

eek. This reemphasizes the need for an appropriate choice of bar

ize. 

Addressing the potentially negative impact of “staleness” on

VC’s accuracy requires a separate investigation that we leave to

uture research. Of prime consideration is the estimation win-

ow to calculate the volume weighted standard deviation of price

hanges ( σ�P i 
in formula (1) ). Given that σ�P i 

is volume weighted,

t does not seem reasonable that a large trade 11 months be-

ore a bar should have the same impact in the calculation of

�P i 
as a similar large trade 11 h prior. A simple way to ad-

ress this is to let large, more liquid stocks have shorter windows

e.g., weekly or monthly), while using longer windows (e.g., quar-

erly) for small, less liquid stocks. To more rigorously approach

his issue, one could use multi-dimensional weighted standard

eviation of price changes, weighting on both time elapsed and

olume. 
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Fig. 2. The surface graphs above show variation in excess kurtosis of the distribution of price changes with the choice of time bar size and market capitalization. Excess 

kurtosis is on the Y-axis, market capitalization rank in the sample on the X-, and time bar size on the Z-axis. The first three graphs show the Euronext sample months in 

20 07–20 08 and last two graphs show LSE sample months in 2017. 



124 M.A. Panayides, T.D. Shohfi and J.D. Smith / Journal of Banking and Finance 103 (2019) 113–129 

Fig. 2. Continued 
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5.1.3. Bias in truncated versus minimum volume bar sizes 

A potential source of bias in the volume bar BVC applied to eq-

uities arises not from the choice of bar size but how that bar size is

applied to the data. BVC proposed in ELO does not specify whether

volume bars should contain volume equal to bar size or if that size

is a minimum amount of volume for each bar. In the former case, if

the last trade in the bar causes the volume in the bar to be greater

than the specified size then the trade will be truncated and the re-

mainder applied to the next bar. Suppose that Trade is a large true
L 
uy trade executed at a price higher than that of both the previ-

us trade and volume bar ( P 1 > P 0 ). First, note that bulk trade level

lgorithms do not suffer from this bias because they classify trades

efore they are aggregated into bars. Whether the volume of this

rade is then inserted within one volume bar or many, each part

f the trade will be correctly signed in this case. 

We display the bias that would have occurred in our results

f we had used truncated, rather than minimum, volume bars in

able 7 . This bias is estimated by summing the volume in each
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Table 6 

Time Bar Volume / Market Time Between Filled Bars. 

Panel A displays the mean and standard deviation of the volume in a time bar. Panel B shows the mean and standard deviation of the 

time elapsed (in seconds) between volume bars. The first column in each panel shows the overall mean by stock-month, while the last 

three show the stock-month averages split by market capitalization. The small, medium, and large capitalization groups (firm size columns) 

are defined in Table 1 . Our sample is the trading of 100 (125) firms listed on Euronext (LSE) for April 2007 and 2008 and February 2008 

(February 2017 and April 2017). Our Euronext (LSE) data includes an order book time-stamped to the second (microsecond). 

Overall Firm size 

Small Medium Large 

Panel A: Time bars - Mean (Standard deviation) Volume 

Sub-second 1,055 (39,235) 2,766 (60,840) 725 (19,106) 1,173 (44,957) 

1 s 2,380 (64,017) 3,491 (72,456) 2,008 (35,371) 2,476 (70,851) 

5 3,738 (80,713) 3,943 (78,417) 2,694 (41,083) 4,168 (92,469) 

10 4,792 (91,885) 4,241 (81,801) 3,177 (44,863) 5,587 (107,638) 

30 8,161 (123,427) 5,077 (93,676) 4,689 (55,122) 10,490 (151,936) 

180 27,271 (252,582) 8,189 (137,471) 13,455 (100,920) 42,673 (343,074) 

300 40,721 (327,978) 9,875 (151,998) 19,820 (124,985) 67,494 (459,946) 

600 71,918 (498,739) 13,326 (184,361) 35,039 (174,906) 128,734 (730,617) 

900 101,172 (649,519) 16,296 (208,758) 49,792 (215,746) 188,970 (974,794) 

1,800 182,857 (1,057,158) 24,040 (263,566) 92,318 (320,942) 366,031 (1,648,747) 

3,600 327,136 (1,722,257) 37,298 (377,805) 170,930 (498,278) 686,838 (2,749,794) 

7,200 571,948 (2,897,165) 60,271 (515,464) 306,830 (771,127) 1,232,013 (4,698,815) 

Panel B: Volume bars - Mean (Standard deviation) market time in seconds elapsed between bars 

Trade Level 23.99 (619.1) 711.49 (3,541.5) 29.56 (668.4) 11.20 (406.2) 

1,0 0 0 47.41 (408.5) 1,056.40 (2,900.7) 66.30 (357.4) 21.69 (92.9) 

2,500 79.16 (578.9) 1,572.36 (3,875.4) 115.01 (529.4) 36.77 (129.9) 

5,0 0 0 110.77 (722.8) 2,205.88 (4,720.1) 166.60 (723.1) 52.38 (173.3) 

10,0 0 0 176.43 (981.2) 3,206.40 (5,925.5) 281.76 (1,068.2) 85.18 (278.8) 

15,0 0 0 245.74 (1,204.9) 4,064.15 (6,736.2) 400.31 (1,367.9) 121.10 (375.5) 

20,0 0 0 304.10 (1,383.7) 4,757.88 (7,412.3) 506.63 (1,598.0) 151.77 (466.8) 

25,0 0 0 360.76 (1,559.0) 5,413.69 (8,032.5) 613.00 (1,849.3) 181.60 (549.9) 

30,0 0 0 405.62 (1,670.7) 5,913.25 (8,439.8) 706.58 (2,013.1) 205.95 (608.9) 

40,0 0 0 521.28 (1,971.0) 7,040.45 (9,382.2) 912.76 (2,376.2) 269.14 (767.8) 

50,0 0 0 610.11 (2,162.5) 7,651.69 (10,021.6) 1,093.53 (2,635.9) 321.41 (888.2) 

75,0 0 0 858.92 (2,697.9) 9,451.88 (11,559.6) 1,555.34 (3,283.3) 466.80 (1,207.7) 

10 0,0 0 0 1,070.26 (3,073.1) 10,482.05 (12,642.9) 1,971.44 (3,772.2) 600.59 (1,473.1) 

Table 7 

Bias from Exact Volume Bar Implementation of BVC. 

This table documents the bias from implementing the bulk volume classification (BVC) algorithm using exact volume bar sizes. It also shows the 

mean and standard deviation of trade size, as this will affect the size of the potential bias. The bias is shown for a range of bar sizes as well as on 

the cross-sectional cuts of sample month and firm capitalization. Please see the text and Figure 3 of the internet appendix for a detailed discussion 

of how the bias arises. 

Overall Subsample period (Euronext) Subsample period (LSE) Firm size 

April 2007 Feb 2008 April 2008 Feb 2017 April 2017 Small Medium Large 

Mean trade size 1,054.8 650.0 648.2 609.5 1,481.1 1,571.9 2,765.8 725.4 1,173.2 

Trade size std. dev. 39,234.7 1,523.1 1,322.1 1,252.8 56,936.3 69,059.7 60,839.5 19,106.1 44,956.7 

Bias from exact volume bars 

1,0 0 0 33.38% 26.42% 25.01% 24.07% 35.22% 35.36% 43.88% 28.70% 34.18% 

2,500 26.02% 17.76% 16.18% 15.40% 28.04% 28.11% 40.00% 21.40% 26.77% 

5,0 0 0 21.38% 11.83% 10.52% 9.96% 23.71% 23.16% 37.34% 17.26% 21.96% 

10,0 0 0 17.63% 7.39% 6.34% 6.01% 19.89% 19.35% 34.47% 14.43% 17.93% 

15,0 0 0 15.90% 5.45% 4.63% 4.34% 17.97% 17.65% 32.58% 13.15% 16.07% 

20,0 0 0 14.91% 4.28% 3.59% 3.41% 17.01% 16.57% 31.25% 12.36% 15.04% 

25,0 0 0 13.96% 3.55% 2.98% 2.81% 15.97% 15.57% 30.05% 11.71% 14.02% 

30,0 0 0 13.48% 3.10% 2.52% 2.42% 15.52% 14.99% 29.45% 11.40% 13.48% 

40,0 0 0 12.74% 2.40% 1.94% 1.82% 14.79% 14.16% 28.03% 10.68% 12.77% 

50,0 0 0 12.16% 1.93% 1.58% 1.50% 14.14% 13.55% 27.01% 10.37% 12.13% 

75,0 0 0 11.22% 1.34% 1.06% 1.02% 13.15% 12.51% 24.79% 9.63% 11.18% 

10 0,0 0 0 10.59% 0.99% 0.80% 0.77% 12.51% 11.77% 23.39% 9.14% 10.55% 
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olume bar over the specified size (“excess” volume) and multi-

lying the sum by one-half. 16 The bias can be large, especially in

he LSE sample. With a bar size of 10 0 0, the bias would have been

5.36% in April 2017. The bias monotonically declines with volume

ar size, especially in the Euronext sample, where it is only 0.77%
16 When a large trade in a truncated volume bar fully fills the next bar, the price 

hange is zero and the next bar will incorrectly be identified by BVC as half buy 

nd half sell volume (see Figure 3 of the internet appendix). 

5

 

w  
or bar sizes of 10 0,0 0 0. In the more recent LSE sample however,

he minimum bias is 11.77%. Not surprisingly, the bias is larger

hen average trade size is large relative to volume bar size. These

esults suggest that minimum volume bar sizes should be used

ather than forcing all volume bars to contain exact volume. 

.1.4. Calibration procedure 

Following the analysis and results in Sections 5.1.1 –5.1.3 above,

e now move to calibrate BVC to stock trading characteristics. In
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finding an optimal bar size for each stock, we want to balance se-

lecting a bar size that is too small, resulting in high excess kurto-

sis and little data compression, with a bar size that is too large,

resulting in too few bars and masking meaningful price changes.

To strike this balance, our calibration procedure searches for the

smallest bar size s in the set of time (or volume) bar sizes S Time 

(S Volume ) —ordered from smallest to largest as shown in Table 2 —

subject to two constraints. First, we introduce a maximum ex-

cess kurtosis constraint ( K i ) for each market capitalization group i ,

to better fit BVC’s assumed t -distribution for the underlying price

change distribution. Second, the volume (time) bar size must pro-

duce a minimum number of bars N i (minimum volume per bar

V i ) because we need “enough” data points (for example, imagine

the extreme case in which there was only a single time bar in a

month). For each firm j at each bar size s , we determine the ex-

cess kurtosis ( k s, j ) and, either the average volume per bar ( v s, j )

for time bars, or number of bars ( n s, j ) for volume bars, and then

search for the smallest bar size that satisfies the following: 

T ime Bars : F or each f irm j, min 

s ∈ S Time 

s s.t. k s, j ≤ K i , v s, j ≥ V i (5)

 olume Bars : F or each f irm j, min 

s ∈ S Volume 

s s.t. k s, j ≤ K i , n s, j ≥ N i (6)

We need to choose a kurtosis parameter K i along with volume

and quantity parameters V i , and N i for time and volume bar imple-

mentations, respectively. First, we note that in Fig. 2 , excess kur-

tosis tends to rise with market capitalization. Liquidity also tends

to rise with market capitalization, which we see in Table 6 in the

greater volume per time bar (panel A) and less time from the

end of one volume bar to the beginning of the next bar (panel

B). Therefore, we choose separate parameters for small, mid, and

large capitalization stocks. Looking at Fig. 2 , we see that the excess

kurtosis tends to smooth in the middle of each 3-D plot (across

capitalizations), which roughly corresponds to a time bar size of

300 s. This time bar size can be translated into share volume us-

ing Table 6 . For calibration minimums, we choose slightly less than

the average volume in 300 s bars, using minimum average volume

within a calibrated time bar of 50 0 0, 10,0 0 0, and 50,0 0 0 shares for

small, mid, and large capitalization firms. Though these minimums

help limit kurtosis, we also directly apply excess kurtosis maxi-

mums of 10 0, 20 0, and 30 0 for small, mid, and large capitalization

stocks based on the data underlying Fig. 2 . In a similar fashion, we

require a minimum number of volume bars (20, 40, and 60 bars

per sample-month) for our market capitalization groups. If no bar

size meets the requirements of formula (5) (formula (6) ), we select

the smallest time (volume) bar size that produces at least 10,0 0 0,

50,0 0 0, 10 0,0 0 0 average volume per bar (10 0, 20 0, or 30 0 bars). 17

We believe this procedure is generalizable to any equities market,

but it will require parameter adjustment based on the distribution

of price changes (driven by excess kurtosis) and volume in any set

of trading data. 

As part of the calibration, we also use flexible minimum vol-

ume bars to avoid the bias noted above, and we adjust the degrees

of freedom for the underlying t-distribution based on market cap-

italization (0.25, 0.1, and 0.05). To run this procedure, we find the

largest bar as described above using the data from the first month

of each sample (i.e., April 2007 and February 2017) to find one bar

size per stock. Then we use the bar selected from this first month

in the remaining months of each sample to produce all the subse-

quent calibrated BVC results. 
17 This “catch all” rule is used infrequently in our three sample-months, and uses 

larger parameters to ensure we limit excess kurtosis, which is the most binding 

constraint in our calibration requirements. 

p  

(  

i  

o  

f  
.1.5. Calibrated BVC and aggressor accuracy results 

Table 8 compares the aggressor accuracy results for calibrated

VC bars and randomly selected bars. Both use bulk tick as a ref-

rence point, so the percentages in the table are the result of tak-

ng BVC’s accuracy minus bulk tick test’s, and a positive number

eans BVC outperformed bulk tick test. The table is split by sam-

le, but because the calibrated results (the second column in each

ample) use bar sizes selected from the prior sample month’s data

ccording to the procedure in Section 5.1.4 , only three total sample

onths are included here (i.e., February and April 2008 and April

017). The results in Panels A and B use volume and time bars,

espectively. 

We start with the same basic implementation as Table 2 ,

ut use a market capitalization-adjusted df t- distribution (see

ection 5.1.1 ) rather than a static df of 0.25. In the first column

f the Euronext February 2008 sample, using randomly selected

ars, the rate at which bulk tick test outperforms BVC ranges from

.45% to 14.28% across market capitalization groups using volume

ars (and from 7.80% to 15.50% for time bars). Calibration slightly

educes the accuracy of BVC across nearly all market cap groups

n the Euronext February 2008 sample. Volume weighted accu-

acy across all firms decreases 2.15% (3.12%) for calibrated volume

time) bars relative to random bar sizes. With the exceptions of an

mprovement in accuracy for small caps and total calibrated time

ar sizes, Euronext April 2008 results are similar. 

We repeat these same comparisons in the two columns for

pril 2017 of the LSE sample. The differences are all positive rela-

ive to bulk tick test, highlighting again how BVC outperforms bulk

ick (and LR) in the LSE sample. Interestingly, the calibrated bar

izes exhibit slightly lower accuracy relative to random bar sizes

cross all but one market capitalization group (small cap volume

ars). Aggregate accuracy in the LSE sample decreases 3.02% and

.45% for volume and time bars respectively. 

Our evidence in this section shows that BVC’s ability to classify

he aggressor side of trades can be improved or maintain supe-

iority to bulk tick test through calibration of BVC. We find that

stimating an appropriate bar size through an iterative, parameter-

zed procedure and using that in the subsequent sample period is

n effective approach. Next, using both pooled spread regressions

nd an event study analysis, we examine whether calibrated BVC

till detects informative order flow. Further, we also test whether

ulk tick test and trade aggressor imbalances are themselves useful

roxies for information. 

.2. Detecting information with calibrated bars 

.2.1. OI regressions with calibrated bars 

It is possible that better aggressor accuracy changes how the OI

stimated with calibrated BVC relates to the spread. For this test

e re-run the OI regressions using only calibrated bars, that is,

nding appropriate bar size in the first sample-month, then using

his for the remaining months of each sample. These regressions

ool the data together and add stock, bar size, and month fixed

ffects. 

Table 9 displays the results of the spread regressions for vol-

me bars using the Corwin and Schultz (2012) and effective spread

easures. There are four different OI measures used across the

ight models: We use calibrated BVC in the first two columns,

VC with a random bar size in the next two, bulk tick test in the

ext two, and finally the true aggressor OI in the last two. Com-

aring results between calibrated (models 1 and 2) and random

models 3 and 4) bar sizes, calibrated BVC order imbalance is pos-

tively related to both spread measures, but the random bar OI is

nly related to the effective spread. Bulk tick OI continues to per-

orm poorly, with a negative and significant coefficient in model 6.
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Table 8 

Comparison of BVC Calibrations and Bulk Tick Test. 

This table displays accuracy comparisons of bulk volume classification (BVC) and bulk tick test for finding trade aggressor. Each percentage is the 

accuracy differential between algorithms, where we take BVC accuracy minus tick test accuracy, so a positive number means the BVC outperformed 

bulk tick test. For each sample, the first column displays differences using random bar sizes. The second column displays differences using a 

calibrated, Student’s t- distribution implementation, where we calibrate each firm adjusting bar size and degrees of freedom by market capitalization 

(see Section 5.1.4 for calibration methodology details). Panels A and B display results for a selection of volume bars and time bars. 

Euronext Feb 2008 Euronext April 2008 LSE April 2017 All Samples 

Random Calibrated Random Calibrated Random Calibrated Random Calibrated 

Panel A: Volume bars 

Small Cap -14.28% -7.02% -13.86% -7.59% 5.00% 4.92% 1.25% 2.45% 

Mid Cap -13.35% -15.92% -8.67% -11.86% 14.07% 10.32% 9.99% 6.70% 

Large Cap -8.45% -10.75% -9.05% -13.25% 14.27% 11.36% 8.66% 6.08% 

Total -9.31% -11.46% -9.09% -12.89% 13.99% 10.97% 8.78% 6.14% 

Panel B: Time bars 

Small Cap -15.50% -18.60% -13.76% -7.97% 7.52% 10.34% 3.29% 5.89% 

Mid Cap -12.94% -21.93% -18.95% -21.24% 15.49% 9.19% 10.86% 4.66% 

Large Cap -7.80% -9.84% -8.34% -2.47% 12.06% 13.18% 8.09% 9.29% 

Total -8.74% -11.86% -10.24% -5.77% 12.71% 12.26% 8.50% 8.26% 

Table 9 

Regressions using Calibrated Volume Bars. 

This table displays results for the regression, Sprea d τ = α0 + α1 [ Sprea d τ−1 ] + γ | ̂  OI τ | + ε τ where columns (1), (3), and (5) display results using the 

Corwin and Schultz (2012) estimator and columns (2), (4), and (6) use the volume-weighted effective spread in the bar. Please see the text for 

variable definitions. Each model has stock, bar size, and month fixed effects. In this table, the Euronext (February 2008 and April 2008) and LSE 

(April 2017) data are pooled together. The first two models use the order imbalance estimated using calibrated BVC bar sizes, the next two use 

random BVC sizes, the next two use bulk tick test, and the last two the true trade aggressor, defined by the buy/sell initiator known in our data. 

In all regressions, we select the stock-month-bar size for BVC calibrated for each firm by bar size and degrees of freedom (see Section 5.1.4 for 

calibration methodology details). T-statistics derived from standard errors clustered by firm are below each coefficient estimate in parentheses. ∗∗

and ∗ denote statistical significance at the 1% and 5% levels. 

Calibrated BVC OI Random Bars BVC OI Bulk Tick Test OI Aggressor OI 

(1) (2) (3) (4) (5) (6) (7) (8) 

Order Imbalance Estimate 0.0643 ∗∗ 0.2662 ∗ 0.0468 ∗∗ 0.1692 -0.0033 ∗∗ -0.0034 ∗∗ -0.0025 -0.0067 

(3.0810) (2.3876) (2.8190) (1.7124) (-2.7650) (-2.6695) (-0.8546) (-1.3394) 

Corwin-Schultz Estimator t-1 0.6689 ∗∗ 0.5256 ∗∗ 0.6699 ∗∗ 0.6699 ∗∗

(13.9812) (14.3406) (14.0012) (14.0023) 

Effective Spread t-1 0.6712 ∗∗ 0.6304 ∗∗ 0.6713 ∗∗ 0.6713 ∗∗

(34.9769) (5.1082) (35.0118) (35.0155) 

Bar Volatility -0.0021 0.0174 -0.0010 ∗ 0.0224 -0.0018 0.0173 -0.0018 0.0168 

(-1.5916) (0.9384) (-2.3208) (1.4840) (-1.4658) (0.9213) (-1.4707) (0.9237) 

Zero Tick Volume 0.0 0 01 0.0 0 01 0.0 0 0 0 0.0 0 01 0.0 0 0 0 -0.0 0 0 0 0.0 0 0 0 -0.0 0 0 0 

(1.1232) (0.4423) (1.1075) (0.8952) (1.1141) (-0.5980) (1.1291) (-0.5145) 

Constant -0.0101 ∗∗ -0.0521 -0.0061 ∗∗ -0.0266 0.0 0 03 -0.0017 ∗ 0.0 0 02 0.0 0 02 

(-2.8211) (-1.4390) (-3.1635) (-1.5833) (0.8911) (-2.5722) (0.6450) (0.1198) 

Stock, Bar Size, Month FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Number of Observations 1,024,622 960,873 1,091,337 931,340 1,024,623 960,873 1,024,623 960,873 

Adj. R-Squared 0.5015 0.4678 0.3657 0.4130 0.5004 0.4676 0.5003 0.4676 
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18 
nterestingly, the coefficients using actual aggressor OI are insignif-

cant, with both point estimates having a negative sign. 

For robustness, we include additional control variables that

ight explain differences in information detection between BVC

nd tick. For example, one possible explanation for BVC’s pos-

tive relation to the spread is volatility. Andersen and Bon-

arenko (2015) argue that BVC only detects order flow through a

orrelation with volatility. Although ELO argue that the Corwin and

chultz (2012) estimator addresses this concern, we further in-

lude actual within-bar price volatility and zero tick volume, the

roportion of trades in a bar that have no price change from the

rior trade. Zero returns are more likely to occur in the absence of

nformation ( Lesmond et al., 1999 ) and may systematically make

ulk tick test performance worse. Including these variables (sep-

rately or together) does not change the results. Indeed, the in-

lusion of neither of these variables influences our results. Overall,

able 9 shows that calibrated BVC is still positively related to the

pread, and this is not driven by in-bar volatility. Researchers can

alibrate BVC to find aggressors without impairing how BVC’s un-

erlying order flow relates to the spread. 
.2.2. Calibrated event study 

As an alternative test of the calibrated BVC’s ability to detect

nformation, we conduct an event study using event dates ob-

ained from S&P Capital IQ. These dates include both scheduled

e.g., earnings announcements) and unexpected events (dividend

hanges, buyback announcements, merger and acquisition devel-

pments). We construct two-day event window cumulative abnor-

al returns (CARs) on [0, 1] adjusted by the CAC-250 (Euronext) or

TSE-350 (LSE) index returns. Across the 11 different event types,

he mean (median) -0.11% (-0.05%) CAR is not significantly differ-

nt from zero. The interquartile range is -11.94% to 8.13%, indicat-

ng that these event CARs capture both negative and positive infor-

ation releases. 

In Table 10 , we present results for the 199 events with cali-

rated volume bars between the event date and two days prior

i.e. [-2,-1]). 18 Prior to the event, we sort firms on BVC order im-

alance (volume-weighted average signed OI) using calibrated bar
Unreported time bar results are similar. 
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Table 10 

Event Study using Calibrated Volume Bars. 

This table shows univariate and multivariate event study results for February and April 2008 using Euronext data and April 2017 using LSE 

data. Ten event types are obtained from Capital IQ and include both scheduled (earnings announcements) and unexpected (M&A announce- 

ments, buyback announcements, dividend increases/decreases, etc.) event dates. We calculate volume weighted signed order imbalance in 

the period between the event date and two trading days prior (i.e. days [-2,-1]). We select the stock-month-bar size for BVC calibrated 

for each firm by bar size and degrees of freedom (see Section 5.1.4 for calibration methodology details). For comparison, we also include 

bulk tick test and aggressor OI results. Mean abnormal CARs are adjusted by the CAC-250 (Euronext) and FTSE-350 (LSE) index returns 

respectively. T-statistics are displayed in parentheses. ∗∗ and ∗ denote statistical significance at the 1% and 5% levels. 

Panel A: Univariate quintiles 

Order imbalance quintile Calibrated BVC OI Bulk tick test OI Aggressor OI 

N CAR [0,1] N CAR [0,1] N CAR [0,1] 

1 40 -0.024 ∗∗ 40 -0.012 40 -0.017 ∗

(-3.191) (-1.451) (-2.438) 

2 40 -0.002 40 -0.005 40 0.006 

(-0.373) (-0.855) (1.167) 

3 40 -0.002 40 -0.003 40 -0.002 

(-0.595) (-0.801) (-0.405) 

4 40 0.004 40 0.007 40 0.003 

(0.931) (1.464) (0.494) 

5 39 0.014 ∗ 39 0.002 39 -0.0 0 0 

(2.061) (0.259) (-0.079) 

5–1 79 0.037 ∗∗ 79 0.013 79 0.016 ∗

(3.750) (1.261) (2.437) 

Panel B: Multivariate 

Calibrated BVC OI Bulk tick test OI Aggressor OI 

Order Imbalance 0.207 ∗∗ 0.026 0.045 

(4.309) (0.898) (1.329) 

Constant -0.022 ∗ -0.018 ∗ -0.016 ∗

(-2.542) (-2.176) (-1.972) 

Month Fixed Effects Yes Yes Yes 

Event Type Fixed Effects Yes Yes Yes 

Number of Observations 199 199 199 

Adj. R-Squared 0.286 0.143 0.156 
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sizes. We then form long-short portfolios, buying the highest quin-

tile of order imbalance (i.e., the group with the most buying pres-

sure) and selling the lowest. Panel A displays univariate CARs for

each quintile of order imbalance and the long-short CAR between

the highest and lowest quintiles. For comparison to the BVC OI, the

table displays results using bulk tick test OI and the actual aggres-

sor OI. Using the BVC, the long-short CAR is 3.7% and statistically

significant at the 1% level. On the other hand, bulk tick test long-

short CAR is insignificant, and while the CAR using aggressor is

statistically significant, it is 210 basis points lower than the BVC

portfolio. 

In the multivariate specifications in Panel B, we regress event

CARs [0,1] on pre-event order imbalance [-2,-1] and add event

month and type fixed effects, which soak up heterogeneity within

time and within event types. The coefficient on calibrated bulk

volume classification order imbalance is positive and statistically

significant. The positive coefficient indicates that when there is

more pre-event buying (selling) pressure captured, there are larger

(smaller) event CARs, as indicated in Panel A. Both bulk tick test

and aggressor order imbalance coefficients are statistically insignif-

icant, however. Thus, only calibrated BVC-estimated order flow

leads returns across a wide range events, suggesting that this order

imbalance estimate is picking up informative order flow. 

6. Conclusion 

The ability to correctly identify the aggressor side of each trade

without order or even quote data has been a critical part of much

of the market microstructure literature. Researchers commonly use

the Lee and Ready trade classification algorithm if quotes are avail-

able or the tick test if not. The recently introduced bulk volume

classification (BVC) has an alternative design that makes it much

more data efficient. We test the performance of BVC in both classi-
ying the aggressor side of trades and identifying informed trading.

e also examine the tick test and LR for comparison. 

To run our tests, we use a detailed data sample of Euronext

20 07–20 08) and LSE (2017) trades and quotes for which we can

dentify the aggressor of each trade. The uniqueness of our data

lays an important part in the contribution of our paper. European

arkets have been slower to fragment than U.S. markets; therefore

 large scale test of LR, the tick test, and BVC algorithms is much

ore feasible than attempting to aggregate all trades for a given

isting across many exchanges that are executing them. Moreover,

he data are from periods with different levels of algorithmic trad-

ng and they have different levels of granularity. 

Our initial results of aggressor classification accuracy

n the Euronext sample are similar to those in ELO and

hakrabarty et al. (2015) that BVC cannot classify trade aggressors

s well as the tick test and LR. Using the newer LSE sample with

ore granular time stamps, however, we find that BVC is more

ccurate than traditional algorithms. Because BVC is a very new

ethod, however, calibrating it for firm-specific implementations

s required. After calibrating BVC using an iterative algorithm, we

nd it classifies aggressors nearly as well as the tick-test and LR

n the Euronext sample. We believe our calibration procedure can

e tailored to any equity data based on the distribution of price

hanges in those specific bars. 

Importantly, we find—using both spread regressions and a re-

urns event study—that BVC has a consistent advantage in captur-

ng information rather than just trade aggressors, which suggests

hat BVC offers real advantages over methods built on signing in-

ividual trades. On further examination, we find that this is not

riven by the tick test per se, but by a fundamental shift in mar-

ets where the aggressor side of trades does not appear to tell

s as much about the underlying intentions of informed traders.

his has implications for traditional measures of adverse selection
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esigned to capture informed trading using trade aggressors (e.g.,

IN measure of Easley et al., 1996 and Easley et al., 2002 ), since it

uggests that these measures can be problematic in modern mar-

ets of fast executions and smart order trading. It also provides

upport to models of informed trading that either don’t use trade

ggressors, such as Johnson and So (2017) who propose a mea-

ure of informed trading based on abnormal volume imbalances

cross stock and options markets, or measures that use the BVC

lgorithm, such as VPIN ( Easley et al., 2012 ). 

upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jbankfin.2019.04.001 . 
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